## Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

## Magnetic field induced irreversibility in specific heat of UNiAl

O. Syshchenko<sup>1</sup>, K. Prokeš<sup>2</sup>, E. Brück<sup>3</sup>, V. Sechovský<sup>1</sup>

- <sup>1</sup> Charles University, DES, CZ-121 16 Praha 2, The Czech Republic
- <sup>2</sup> Hahn-Meitner-Institute, SF 2, D-14109 Berlin, Germany
- <sup>3</sup> University of Amsterdam, NL-1018 XE Amsterdam, The Netherlands

Results of low-T specific-heat (C) measurements of UNiAl single crystal in magnetic fields B < 14 T will be presented. UNiAl is an itinerant 5f-electron antiferromagnet ( $T_{\rm N} \approx 19$  K) that is reflected in a reduced U moment and a high  $\gamma \approx 165$  mJ/molK<sup>2</sup>. Owing to huge uniaxial magnetocrystalline anisotropy, the only field influence on magnetic contributions to C and other electronic properties is observed if the field is applied along the c-axis of the hexagonal structure. At T < 8 K, UNiAl undergoes a first-order metamagnetic transition for  $(B_c \approx 11.4 \text{ T})$  between the AF state and a high-field ferromagnetic ordering of U moments. In this T range the C vs. T curves measured in B=0 T are different depending on magnetic history. The C values for the ZFC sample are between 2 and 7.8 K higher than for a sample that has appeared in the high-field state prior to measurement. The field induced irreversibility is clearly evidenced on the C vs. B data obtained at 3 K. For a measurement cycle (starting from ZFC state)  $0 \text{ T} \rightarrow 14 \text{ T} \rightarrow 0 \text{ T}$  the "ascending field" ( $C^{\text{af}}$ ) and "descending field" ( $C^{df}$ ) data below 9 T clearly differ and  $C^{af} > C^{df}$ . In both cases we observe (for B < 9 T) a  $C = C_0 + aB^2$  dependence with different  $C_0$  and a values in each case. The results will be discussed in the context of other electronic properties reported for UNiAl before and neutron scattering results reported elsewhere at this conference.